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The perturbation theory is used to evaluate first order SCF corrections upon Roothaan
type molecular wave functions due to one-electron perturbations. The method is applied to the
one-center SCF MO wave functions of HF, H,0, NH, and CH, to calculate the electrical
polarizability and the magnetic susceptibility tensors. The results obtained agree reasonably
well with the available experimental data. The effects of the limited number of basis functions
upon the final results are discussed.

La théorie des perturbations est utilisée pour évaleur les corrections SCF du premier ordre,
aux fonctions d’onde moléculaires du type Roothaan, diies & des perturbations monoélec-
troniques. La méthode est appliquée aux fonctions d‘ondes SCF MO a un centre de HF, H,0, NH,
et CHj, pour le calcul des tenseurs de polarisabilité électronique et de susceptibilité magnéti-
que. Les résultats obtenus sont en accord raisonnable avec les données expérimentales dispo-
nibles. L’effet du nombre limité de fonctions de base sur le résultat est discuté.

Es werden Stérungen erster Ordnung an SCF-MO-Wellenfunktionen, hervorgerufen durch
Einelektronenstoroperatoren, im Rahmen der Stérungstheorie behandelt. Inshesondere wer-
den die Tensoren der elektrischen Polarisierbarkeit und der magnetischen Suszeptibilitit
unter Verwendung von Einzentrumfunktionen fiir HF, H,0, NH; und CH, berechnet. Die Er-
gebnisse werden mit den verfiigbaren experimentellen Daten verglichen. Die Effekte der end-
lichen BasisgroBe auf die Resultate werden diskutiert.

Introduetion

The calculation of some observables of interest like electrical and magnetic
polarizabilities within the SCF MO scheme can be performed either by the direct
calculation of the SCF energy for several values of the applied field [7, 2] or by
using the perturbation technique [3, 4, §]. Both methods have been used with
encouraging results but the second one allows to separate the various orders of
perturbation. Thus it offers the possibility of picking out the wanted coefficient of
a given power of the perturbation parameter whereas the first procedure needs a
subsequent interpolation [I, 2]. Furthermore the perturbation technique offers
some computational advantages which are of importance when large basis sets are
involved.

In this paper the electrical and magnetic polarizability tensors of HF, H,0,
NH; and CH, calculated by the perturbation technique using OCE SCF MO
[6, 7, 8] wave functions are reported.

The perturbation theory for SCF wave functions has been given by several
authors, and recently an excellent account has been given by McWExrNY {3, 4] for
the Roothaan type SCF MO [9, 10]. Therefore here only a brief outline of the
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theory for closed shell cases is given and we refer to McWeeny’s paper for the
essential literature on the subject.

Theory

Given a certain basis {)} comprising % real functions, not necessarily ortho-
gonal, m doubly occupied orbital ¢ = {y} C}(j= 1, 2,...m) are constructed by
the Roothaan procedure [9]. The resulting HF matrix will determine, besides
these m orbitals @;, » — m empty, or virtual, orbitals ¢ = {y} C%\v=m + 1,...n).
The derivative of the HF energy ¥ with respect to a parameter y, which appears
in the one-electron part of the original hamiltonian is given by

B m
(), = 25, @tlwian )

where > A with the index y running over all the electrons, means the derivative

of the Ifamiltonian with respect to  and the SCF orbitals ¢} are evaluated for the
value 0 of y. Eq. (1) simply indicates the well known fact that the SCF wave
functions are stable [7I] and that the Hellmann-Feynman theorem is valid for
SCF wave functions, even of the Roothaan type. Deriving Eq. (1) again with
respect to an other possible parameter § still being contained in the one-electron
part of the hamiltonian the following expression

a2 — 2 S KA o> + | [ + o | 1 ) @

is obtained. This last expression does not appear symmetric, but it is not difficult
to show that it is invariant against an exchange of 8 and y.

The derivative ¢f of the occupied orbital ¢; appearing in Eq. (2) must be such
as to satisfy the following equation obtained by deriving the unperturbed HI
equation with respect to 5:

o~ &) ¢} = (& — 10 — 89 ¢f ®)
where f, is the unperturbed HF operator, whose eigenfunctions and eigenvalues
are ¢ and &) . & represents the derivative of the HF electron repulsion potential.
It can be shown [3, 4] that the derivatives of the orbitals can be expressed as

n LR+ |6}

@ = —jﬁr——' =g 4)
v=m+1 7 v
The solution of this last equation can be found by an iterative procedure, starting
with ®#= 0 and constructing afterwards the needed matrix elements G&; =
(¢S | ®# | ¢f> at each iteration, with the ¢f obtained from the proceeding iteration

by
= é [2¢e0 ¢k |90 o> + 2o ot |0 #> — (ob ok | ool — <ob ok It} D). (5)

In principle this iteration procedure is not needed, in fact from Eq. (5) and (4) we
have

7 H *+Gt
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obtaining an explicit linear relation between the sought matrix elements and the
other known quantities. Once the ¢} are kwown it is possible to evaluate the energy
up to the third order [3, 4].

For many practical reasons it is quite desiderable to work with matrix elements
between the basis functions y and not with those between the molecular orbitals
@. Thus Egs. (3) and (4) will became respectively

(F— & 8)Chi= (£ §— F) CY, (3a)
CHFCY,
Cj=2>"5—5"Ch, (4a)
v () £’

where F is the unperturbed HF matrix in the basis {y}, § is the overlap matrix,
and ng = {ya | k8 + ©F | yp>. It is now possible to write down the expressions for
the energy derivatives, up to the third derivative, as functions of the C°, C? and
of integrals over the basis functions {y}. It happens that the overlap matrix § will
appear only in the third derivatives.

If the perturbation is due to an homogeneous electrical or magnetic field
& or A, the derivatives of the hamiltonian are

ghf’g =— ggﬂ (7)
SHE =~ 55 3 (S ®)
%hf,.%’,: 422 %(7“;21 —_ 9124) , (9a)
S W Fe = g S 0l 6+ 9, (9b)
(9.9 = =, 9,2)

where atomic units are used throughout. (8,), indicates the g component of the
angular momentum operator for the u* electron, and the origin of the vector
potentials have been taken coincident with the origin of the axes [12]. The elec-
trical and magnetic polarizability tensors & and y are related to the second deriva-
tive of the energy, as here calculated, by the following relations
)
YAy
0*E
%09 = T e Ay

(g> g’ =Y, z) . (10)

Results
EBlectrical polarizability

The iteration procedure based upon the use of Eq. (4a) has been employed to
calculate the electrical polarizability tensors of HF, H,0, NH; and CH,. The
unperturbed SCF wave functions chosen were the one-center expansion type
already published [6, 7, §].

The perturbations considered (7) are such as to cause a mixing of the original
basis functions with those excluded by symmetry considerations in the unperturbed
problem. Therefore the functions of Tab. 1 identified by the value of their para-



Polarizability and Susceptibility of XH, 195

Table 1

n I m ¢

3 2 2 200
HF 32 -2 200
4 3 2 240
4 3 -2 240
HO 3 2 -2 160
4 3 -2 195

NH, 4 3 3 200

4 2 2 190
CH, 4 2 0 190
73 2 290

meters n, I. m and { [6] where added. These added functions are needed to
obtain a presumably equally balanced basis set in the presence of the perturba-
tions.

With these extended basis sets the iteration procedure for the perturbated SCF
wave functions was carried on until the variations of the perturbed vectors C of
Eq. (4a) where such as to give no significant variation of the value of the gy,
elements. The convergence was rather nice and its almost geometrical behaviour
strongly suggests that a suitable extrapolation procedure should easily be found.
The vectors obtained were not checked against those obtainable by solving directly
Eq. (6). This is because our basis sets of ~30 functions are already too large, from
a numerical viewpoint, for the direct solution. On the other hand the convergence
was such as to not raise doubts about the iteration procedure results.

A different check was obtained by caleulating some atomic electrical polari-
zabilities already evalnated by a direct SCF procedure by CoHEN and ROOTHAAN
[2]. The results obtained agree to four significant figures with those of ConEN.

Tab. 2 shows the unperturbed orbitals of HE and their derivatives with respect
to the electrical field strengths &, and &, obtained after nine iterations. The
reported figures for these derivatives should be those of the asymptotic values.
Tab. 3 reports the electrical polarizabilities here obtained together with those
given as experimentals.

Only the diagonal elements are included because the orientations of the axes
were those of the principal axes. Precisely:

1. the 2z axis was chosen coincident with the axis of higher simmetry, except
for CH, where the orientation does not matter,

2. the yz plane was chosen coincident with the molecular plane for H,0.

The polarizabilities were calculated for the theoretical equilibrium configura-
tions (6, 7, 81, but their value changes negligibly if evaluated for the experimental
configurations. As an example in Tab. 3 the polarizabilities of H,0 and NH, are
also reported at their experimental equilibrium configurations. For these two
molecules there was the greatest difference between the calculated and the experi-
mental equilibrium configurations.
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Table 3. Results of the electrical polarizability calculations

HF H,0¢ H0*» NHs NHe CH,

Cale. 5.25 9.18 9.20 17.42 17.72 18.89
ozz{cm® 10-25) (14.50)°

Exp.e (7.2) — 21.8 26.0

Calec. 525 119 12.02 17.42 17.72 18.89
oyy(cmd 10725) (14.50)¢

Exp.¢ (7.2) — 21.8 26.0

Calc. 779 10.73 10.67 16.24 16.27 18.89
az(cm® 10-25) (13.0)e

Exp.d (9.06) — 24.2 26.0

Cale. 6.10  10.61 10.63 17.03 17.24 18.89
o(cm3 10-%) (14.0)e

Exp.¢ 24.6 14.56¢ 22.6 26.0

a Calculated at the experimental equilibrium configuration.

b Calculated at the theoretical equilibrium configuration of Rox ~ 1.814 au, &#mom =
106°32" Ref. [8].

¢ Caleulated at the theoretical equilibrium configuration of Rym = 1.928 au, fmwm =
108°54” Ref. [7].

4 Taken from Lanporr-BORNSTEIN: Zahlenwerte und Funktionen, Vol. I, Part 32, p. 511.
Berlin-Gottingen-Heidelberg: Springer 1951.

e Calculated with the extended monocentric basis set.

¢ Ref. [22].

The calculated polarizabilities seem to agree reasonably well with the experi-
mental ones. Although they are consistently lower than the experimental ones it
is rather difficult to say if this is due to the basis employed, limited and mono-
centrie, or to the HF approximations.

In order to gain some insight in this problem more extended monocentric
bases were tried for H,O and NH,. The results were disappointing because they
showed neither any clear trend toward an asymptotic value nor their agreement
with the experimental data improved. For instance for NH; a basis of 80 functions
including values of [ up to 7, which gives for the experimental geometry a molecular
energy of —56.122885 au, yields the following polarizabilities in em?3-10-25

Ogp= 14.495; oyy= 14.495; Xz, = 12.986; x= 13.992

which differ from the experimental data more than the results obtained with an
inferior basis set.

To understand how this could happen it can be observed that Eq. (3), which
determines the first order correction to the molecular orbital, represents the condi-
tion for which the functional

I= 2i§1{<¢?Ikﬂ—l—%@ﬁ]¢p§>+<99§yh5+%@ﬁl(p2>+<¢§|fo—g§?]tp§>} (12)

is an extremum for arbitrary variations d¢?. When Eq. (3) is satisfied for all values
%
of j(j = 1, 2...m), I assumes the value of% as given by Eq. (2).
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The foregoing is valid also when the ¢’s are expressed in terms of a limited
basis set. All the cases which were examined here exibited, as said, a nice con-
vergence reaching the asymptotic values without oscillations. This gives an
indication that for the cases tried the extremum values of I probably were
maxima. It must be expected then that by adding some more basis functions
which leave the operator f, unchanged, or changes it only negligibly, a greater
value of I should be obtained. This is the case for instance for the basis functions
which, because of symmetry reasons, are not needed in the unperturbed HF
problem. It is more difficult to judge the effect upon I of adding basis functions
which could became strongly involved in the unperturbed f,.

By these considerations it would be easy to add some particular functions to
the original basis with the aim of improving the calculated polarizabilities. Natural-
ly this would be rather meaningless, therefore no such attempt has been under-
taken. The preceeding consideration seem to apply also to the calculations of
STEVENS et al. [6] of the paramagnetic susceptivity of LiH.

In fact from the results reported in their Tab. 2 it is clear that the addition of
z funections, which obviously leave the unperturbed f, unchanged, increase the
value of the paramagnetic contribution; whereas going from a limited ¢ basis
(column TIIT) to a much more extended one (column IT) with the same 7 basis, the
paramagnetic contribution to the susceptibility decreases.

Owing to the above mentioned difficulties about predicting the effect of the
addition of basis functions upon quantities like the electrical polarizabilities, we
are forced to rely solely upon the numerical results obtained in order to make some
considerations.

It seems highly improbable that a further extension of a monocentric basis for
NH; could modify noticeably the results here reported. Considering that the energy
obtained is already close to the estimated HF energy [7] and that a monocentric
wave function is probably poor only in the regions quite close to the protons
(which should not conftribute a great deal to the polarizabilities) it seems rea-
sonable to think that the discrepancy may be connected with the single detor
approximation.

Magnetic susceptibility

As for the electrical polarizabilities the iteration procedure described has been
employed to evaluate the modifications caused by the perturbations (8) upon the
unperturbed monocentric wave functions of Ref. [6, 7, §]. The calculations were
performed with the extended basis set (Tab. 1). The orientation of the axes, whose
origin was always located on the heavy nucleus, was the same as before in order to
have both the diamagnetic susceptibility tensor y2 and the paramagnetic one 42 in
a diagonal form. Even in these cases the convergence was analogous to that found
for the electrical polarizabilities, i.e. it was without oscillation and rather fast.

Tab. 4 shows the results obtained. The comparison with the experimental data
is here complicated by the fact that the experimental data of the paramagnetic
part of the susceptibility refer to the center of mass taken as origin since they are
derived from the rotational magnetic moment. Thus they cannot be compared
directly to the present calculated values which refer to an origin centered on the
heavy nucleus. Fortunately the experimental diamagnetic part can easily be
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Table 4. Calculated value of magnetic suscepithility. The origin is upon the heavy atom

xin[ppm] HF H,08 H,00 NH,» NH,e CH,
1oz -11.25 ~-16.55 ~16.56 ~21.29 —21.61 -29.22
1%, ~11.25 ~14.66 ~14.60 ~21.29 -21.61 -29.22
%2, -10.09 -15.19 ~15.27 —92.74 -23.33 -29.22
% ~10.87 —15.47 —15.48 —921.77 -92.18 -29.22
1% 0.520 1.891 1.909 1.961 1.853 6.679
e 0.520 0.665 0.641 1.961 1.853 6.679
jra 0.523 0.862 0.867 3.744 4.032 6.679
7® 0.521 1.139 1.139 2.55 2.579 6.679
x ~10.35 —14.33 ~14.33 -19.48 ~19,60 -22.54

@ Calculated at the experimental equilibrium geometry.
v Calculated at the theoretical equilibrium geometry Ref. [8].
¢ Calculated at the theoretical equilibrium geometry Ref. [7].

evaluated for the latter origin once the coordinates of the centroid of the electronic
charge are known. These are obtained from the experimental dipole moments
considering the positive end of the dipole lying toward the proton(s). Since the
experimental susceptibility is obviously gauge invariant, the paramagnetic part
for the origin located upon the heavy nucleus is readily derived.

Tab. 5 reports the calculated values together with the experimental ones. The
total susceptibilities were taken from LaNDOLT-BORNSTEIN [13] whereas the
paramagnetic parts were derived [74] from the most recent determination of the
rotational magnetic g tensors of HF [15], H,0 [16], NH, [14], and CH, [17]. All
the diagonal ¢ elements were taken to be positive. The columns 4 of Tab. 5 refer
to the origin located upon the heavy nucleus while the B columns report the values
for the center of mass taken as origin. The comparison between calculated and

Table 5. Comparison of the calculated and experimental magnetic susceptibilities

% (ppm) %2 (ppm) % (ppm)
A B A B A
HF Cale. —10.87 -10.78 0.521 — -10.35
Exp. - 9.30 —~ 943 0.7 0.53v — 8.68
H,0 Cale.  —15.47 -15.30 1139 — —14.33
Exp.  —14.82 —14.46 1.82 1.46¢ ~18.0®
NH, Cale. —21.77 ~21.57 2.555 — -19.48
Exp. —23.38 -23.0 4.68 4.3¢ —18.7s
CH, Cale. -—29.92 ~29.22 6.679 — —922.54
Exp. -21.44 —21.44 9.24 9.24¢ 12,29

A The origin is upon the heavy nucleus.
B The origin is upon the center of mass.
= Ref. [13].
a Ref. [15].
¢ Ref. [14].
4 Ref. [17].
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experimental values seems reasonably good except for CH, where the calculated
value of the diamagnetic part seems to be much too large and the paramagnetic
part much too small. The comments made about the calculations of the electrical
polarizabilities hold for the paramagnetic part of the susceptibility as well and
indicate that no definite statement can be done at the moment. On the other hand
the discrepancy between calculated and experimental diamagnetic part seems too
large. In order to see if this discrepancy could be ascribed to the limited onecenter
basis, some more sophisticated wave functions, always of the SCF MO type, were
tried. The first one employed a monocentric basis comprised of 76 functions with
values of I up to 7. The energy obtained at the experimental geometry is
—40.110321 au [18]. The second one employed one 1s one 2s and one 2pz.y, ,
orbital upon the C atom and one 1s centered at each of the H atoms. The resulting
energy was —40.11526 au at the experimental equilibrium geometry [19]. Finally
the third one included two 1s, two 2s, two 2py,y,, upon the carbon and two 1s
orbitals upon each hydrogen. The resulting energy of —40.18455 au is for the
experimental geometry [/9]. These three wave functions give the diamaguetic
susceptibility as —28.44, —27.62 and —28.69 ppm respectively. Tab. 6 gives a
summary of these calculations. It seems that great changes of this observable
should be ruled out if it is evaluated within the one detor approximation. Remem-
bering that the diamagnetic part of the susceptibility is the expectation value of
a one-electron operator evaluated with an unperturbed closed shell SCF MO wave
function, which satisfy the Brillouin theorem, the discrepancies found do not seem
justifiable and cast some doubt on the experimental magnetic susceptibility.

As said before the present calculation were performed only with the origin of
the vector potential 4 located upon the heavy nucleus and their dependence upon
different gauges therefore was not investigated.

It is proper however to point out that the choice of the gauge coincident with
the center of expansion is the best possible for the paramagnetic contribution. For
this gauge in fact the basis would be more nearly close to a complete set than for
any other choice. On the other hand the use of gauge invariant basis functions [20]
would not have brought any advantages. Let us suppose to have used instead of
the actual basis a gauge invariant basis [20] obtainable from the actual one simply
by multiplying each function times exp [(i/c) (# x 7,)* 7. Being all the basis func-
tions centered upon the origin, the vector 7,, which gives the location of the origin
of the vector potential 4 = ¥ # x (7 — 7,),is the same for all functions. The matrix
elements of the Hartree-Fock matrix F, as well as those of the overlap matrix §,

Table 6. Calculated Diamagnetic susceptibility of CH,

Type of basis

Monocentric Monocentric Minimal Double zeta
STO STO LCAO STO LCAO STO
lupto 3 lup to 7

Number of basis

functions 26 76 9 18

Molecular energy

[au] —39.86597 -40.11032 —40.11526 —40.18455

%% [ppm] -29.22 —28.44 —27.62 —28.69
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in this basis would be independent from the particular gauge 7,. The elements of
F will depend only upon the field 2#. Thus the resulting SCF energy, calculated
with this limited basis, will be independent from any particular gauge 7, and if
expanded as a power series in 3¢, will have the coefficients independent from the
gauge. These coefficients will then be coincident with those obtained for 7= 0, to
which the present calculation corresponds. Naturally this gauge invariance is
obtained artificially while true gauge invariant results can be obtained only using
a complete basis set. Whith limited basis sets, which are the only ones employable,
it is probable that a true gauge invariance can be approximated more easily with
multicenter basis sets than with monocentric ones. For this latter type in fact, the
best results are to be expected when the gauge is coincident with the origin of the
axes, while this effect is surely smoothed out for multicenter bases. Obviously the
gauge variations meant in this context are restricted within the molecular volume,
because for gauges far away from the molecule the same criticism can be applied
to the multicenter bases.

Conclusion

The results here reported for limited monocentric bases, although they cannot
claim to be a definite answer to the question whether or not the one center expan-
sion is capable of giving reliable values for the electrical and magnetic polari-
zabilities, are such as to give some indications. First of all, for the cases tested, it
appears that the reported results are close to the limits of the one center expansion.
These results, on the other hand, do not compare unfavorably with those obtained
with the best of multicenter SCF MOs [27]. This would mean indeed that the exist-
ing discrepancies between experimental and calculated values are ascribable to the
single determinant approximation. This point needs more careful investigations
which are being undertaken in this laboratory using more sofisticated wave
functions. What seems rather clear is that even some experimental data might
need further consideration.
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